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RETHINKING THE ROLE OF

COUNTING IN MATHEMATICS LEARNING

JENNIFER YOUNG-LOVERIDGE
FacuLTy oF EDUCATION

THE UNIVERSITY OF WAIKATO

jenny.yl@waikato.ac.nz

ABSTRACT

This paper challenges the emphasis on
counting in New Zealand’s Numeracy
Development Project (NDP), arguing
that subitizing provides an alternative
pathway to quantification. Longitudinal
data is presented showing that children’s
subitizing skills at the age of five

years were a strong predictor of their
later success in mathematics at the

age of nine years. Sophian’s work of
comparison of continuous quantities

is explored. Data from students

whose teachers participated in NDP
professional development programmes
are compared with the expectations
documented in the Mathematics
Standards. The analysis shows that the
percentages of students who reach

the expected level for their year group
is well short of the Standards. It is
suggested that the large number of
micro-stages at the lower end of the
Number framework together with the
positioning of part-whole strategies as
the fifth stage on the framework may
give the impression that teachers should
not focus on the relationship between

a whole and its parts until students are
able to count on (stage 4). The paper
concludes by suggesting that a dual
focus on subitizing and counting right
from the beginning might help students
to develop a deeper understanding

of cardinality and of the relationship
between a whole and its parts, resulting
in them reaching expected levels earlier.

In the last few decades, mathematics education has undergone major reform
worldwide. New Zealand, along with other western countries responded to its
relatively poor results on the Third International Mathematics and Science Study
(TIMSS) by developing an initiative designed to strengthen students’ understanding
of mathematics and numeracy. Most initiatives in mathematics focused initially
on the early years of school (Bobis et al., 2005; British Columbia Ministry of
Education, 2003; Commonwealth of Australia, 2000; Department for Education and
Employment, 1999; Ministry of Education, 2001; National Council of Teachers of
Mathematics, 2000). These initiatives have several features in common, including
professional development programmes for teachers to enhance their capacity to
teach mathematics, the construction of developmental frameworks that describe
progressions in the learning of mathematics, individual task-based interviews to
assess students’ thinking and reasoning in mathematics, and a constructivist/
socioconstructivist view of mathematics teaching and learning, so that instruction
builds on the existing knowledge of the learner (Bobis et al., 2005).

At the core of many numeracy initiatives are the learning frameworks, consisting
of progressions of increasingly sophisticated strategies in particular mathematical
domains (Bobis et al., 2005). Most initiatives include a sequence of stages outlining
progressions in number, reflecting the perceived importance of number in the
curriculum, and the comprehensive foundation of research that is available to
support this (Kilpatrick, Swafford, & Findell, 2001). The work of Steffe has been
extremely influential in the development of progressions in the domain of number
(Steffe, 1992).

Many of the learning frameworks constructed as part of reform in mathematics
education begin with the development of counting skills (e.g., Bobis et al,, 2005;
Ministry of Education, 2008). Such frameworks have taken the work of Gelman and
Gallistel (1978), who documented the progression from saying number names in
order (rote counting), to assigning number names to items while maintaining one-
to-one correspondence between the number name and the item (object counting),
and finally recognition of the cardinal principle—the idea that the last number
name used when counting a collection of objects tells how many items are in the
collection in total. Young children who do not understand cardinality typically
respond to a question about “how many altogether?” by recounting the objects
they have just counted. Once children have mastered object counting, they can
use it to solve problems involving addition and subtraction (see Figure 1 for the
Number Framework).

STAGE DESCRIPTION

EMERGENT
Cannot count

1 ONE-TO-ONE COUNTING
Can count a small collection up to 10, but cannot use counting to add or
subtract collections.

COUNTING FROM ONE ON MATERIALS
Can add two collections by counting, but counts all the objects in both
collections

N

COUNTING FROM ONE BY IMAGING
Adds two collections by counting all, but counts mentally by imaging
objects

w

4 ADVANCED COUNTING
Recognises that the last number in a counting sequence stands for all the
objects in the collection, so counts on for the second collection

5 EARLY ADDITIVE PART-WHOLE STRATEGIES

Recognises that numbers are abstract units that can be partitioned
(broken up) & recombined (part-whole thinking). Uses known number
facts to derive answers
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6 ADVANCED ADDITIVE PART-WHOLE STRATEGIES
Chooses from a range of different part-whole strategies to find answers
to addition and subtraction problems

7 ADVANCED MULTIPLICATIVE PART-WHOLE STRATEGIES
Chooses from a range of different part-whole strategies to find answers
to multiplication and division problems

8 ADVANCED PROPORTIONAL PART-WHOLE STRATEGIES
Chooses from a range of different part-whole strategies to find answers
to problems involving fractions, proportions, and ratios

Figure 1. New Zealand’s Number Framework

SUBITIZING

While counting is an important process that leads to quantification, it is not the
only way for students to begin developing numerical thinking. An alternative
method of quantification is subitizing—recognising the number of items in a small
collection without counting (Clements, 1999; Sarama & Clements, 2009, 2010), or
“instantly seeing the quantity” (Kling, 2011, p. 85). Clements and Sarama distinguish
between two types of subitizing: perceptual and conceptual subitizing. Conceptual
subitizing involves combining several small quantities that have been identified
initially by perceptual subitizing to calculate a total sum (e.g., recognizing a pair of
dice displaying identical patterns of five as signifying simultaneously two groups of
“five” and one group of “ten”). Children who play dice games and dominoes quickly
learn to name the stylised patterns presented on the dice without needing to count
all the dots (see Young-Loveridge, 1991, 2004). According to Sarama and Clements
(2010), subitizing “is most children’s first method of quantification” (p. 117). They
also point out that subitizing the number of items in a collection “encourages and
reinforces understanding of the cardinal principle” (p. 117).

A longitudinal study of students from school entry at five until the end of Year 4
identified subitizing skill at age five the second strongest predictor of their later
success in mathematics at the age of nine years, explaining 41 percent of variance
in overall performance at the end of Year 4 (Young-Loveridge, 1991). Only the task
asking students to construct groups was a better predictor, explaining 45 percent
of variance at the end of Year 4. It was for this reason that subitizing (referred to
as pattern recognition) was included in Checkout/Rapua, the supermarket game
developed to assess young children’s mathematics/numeracy on entry to school
as part of the School Entry Assessment kit (see Ministry of Education, 1997). The
longitudinal study showed that more than two-thirds (70%) of new five-year-olds
could subitize a pattern of “three”, and more than half could subitize patterns of
“four” and “five” (58% and 52%, respectively).

There is immense potential for students to learn basic facts for addition and
subtraction of small quantities using subitizing as the foundation. For example,
Buchholz (2004) used doubles as a foundation with her Grade 2 class, and extended
the combinations to “Doubles Plus One” (e.g., seeing 5 + 6 but thinking 5 + 5 +

1). The “Doubles Minus One” strategy emerged as students recognised it as an
alternative strategy for the same problem (e.g., seeing 5 + 6 and thinking 6 + 6 —
1)."Doubles Plus Two” and “Doubles Minus Two” emerged as strategies where one
addend was two more (or less) than the other (e.g., seeing 5 + 7 and thinking 5 +
5+ 20r 7+ 7—-2).In the case of subitizing, the important idea is the notion of
“One More Than” or “One Less Than” the quantity that has been subitized. Although
the answer to these questions is the same as “The Number Just After” and “The
Number Just Before,” the posing of the question in terms of a cardinal value rather
than asking about number sequence orients the students towards cardinality

and quantification instead of the counting process. Clements and Sarama (2009)
suggest the use of games that help students to take mental “snapshots” of dot
patterns so they can match them (or identify a mismatch) with other patterns
showing the same (or different) quantities in different spatial arrangements (see
Figure 2 for an example of “The Odd One Out”).

CoMPARING CONTINUOUS
QUANTITIES

Support for the idea that counting may
not be the only starting point for the
development of numerical knowledge
comes from the work of Catherine
Sophian (2007, 2008), who argues that
mathematical thinking begins not with
counting, but with comparisons of
continuous quantities. Such quantities
are defined as continuous because they
are measurable rather than countable
(discrete), and include things like sand,
water, and dough. Sophian’s view is based
on several lines of evidence, including
studies showing that very young children
develop an understanding of very general
properties of quantities long before they
are able to articulate counting words.
Sophian (2008) points out that counting
presupposes a quantity, whereas quantity
comparison does not presuppose number.
She argues that numbers are arbitrary
symbols that are used to represent
measured quantities, whereas quantities
are physical properties that can be
measured directly. According to Sophian,
there are some concepts that are even
more fundamental than number, including
the concept of set (a group or collection),
the idea of equivalence, and the concept
of unit. She draws on the work of Soviet
psychologists who have noted that a
fundamental aspect of the concept of
unit is the idea of equivalence between
units. Also, because different units can be
applied to the same quantities, “numerical
values are essentially representations of
the relation between the quantity they
represent and a chosen unit” (Sophian,
2008, p. 25).

Sophian (2004) suggests that one possible
reason that students experience so much
difficulty learning about fractions in the
later primary years is that the initial
emphasis on counting and whole-number
quantities may be counterproductive, and
may in fact inhibit students’ learning about
part-whole relationships in the context of
fractional quantities where the size of the
parts is critical to understanding fractional
concepts. She cites a number of studies
showing that young children often centre
(focus narrowly on a single attribute) on
the number of objects while ignoring the
size of the objects, and that a focus on
counting encourages this narrow view.

. Figure 2. An example of “Find the Odd One Out”
showing different arrangements for conceptual
subitizingof5as4+ 1,2+ 1+ 2,2+ 3, 0r5, with
4 as the odd one out in the middle (adapted from
. the work of Clements & Sarama, 2009, p. 11)
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She argues that children need far more
experience with continuous quantity and
the unitisation of that quantity in order to
draw their attention to the magnitude of
quantities, not just the number. One of the
ways she has done this is to investigate
children’s understanding of the order
relations of unit fractions (e.g., 5 and %)
and of their "complements” (the fraction
formed by subtracting the unit fraction
from one; e.g., 13 and 2). Some of the
students she studied appeared to
understand the idea that the larger the
denominator, the greater the number of
parts, and the smaller the magnitude of
each part, but could not coordinate
information about the numerator as well as
the denominator in comparing the size of
the “complements”. These children tended
to focus just on the denominator, judging
that because thirds are larger than twelfths,
13 must be smaller than 2 (Sophian, 2004).
Their difficulty appeared to stem from them
not being able to coordinate different units
of quantity (the unit and the fractional
part). According to Sophian, this goes back
to their lack of understanding about the
iteration (repetition) of units of
measurement.

In another study, Sophian and her
colleagues (1997) found that young
children initially had difficulty appreciating
the inverse relationship between the
number of shares into which a quantity is
partitioned and the size of those shares.
However, after only a brief instructional
period, even 5-year-olds understood this
connection. Sophian and colleagues (1995)
have investigated children’s ability to reason
relationally and their understanding of
numerosity (counting to determine total
number). They argue on the basis of their
findings that reasoning relationally develops
quite independently of counting processes.
In earlier work, Sophian (1987) had shown
that very young children tended not to use
counting to compare two quantities even
though they were clearly able to count
quite proficiently.

According to Sophian, the instructional
implications of the “counting first”
perspective are very different from those of
the “comparison of quantities” perspective.
Instruction is important for developing an
understanding of

that in additive reasoning, the same unit is applied to both quantities, enabling

a comparison that shows how much greater one quantity is than another. In
multiplicative reasoning, one quantity is used as a unit to measure the other,
enabling a comparison showing how many times greater one is than another.
Sophian (2008) argues that “early instruction that focuses on particulars and
eschews abstraction may result in ways of thinking about the particulars that

are not congenial to the abstractions to be studied later” (p. 39). Moreover, “the
difficulties students experience with relatively advanced topics such as fractions
may derive from an inadequate grasp of much more basic concepts” (p. 40). Hence,
early instruction must be designed to take into account the relationships between
concepts taught early on and the mathematics that students will need to learn in
later years. Sophian suggests that the “comparison of quantities” perspective can
be used to build concepts of both quantity and of relative amount. She urges early
years teachers to go from the observation of relationships in concrete contexts

to mathematical abstraction, by asking children to consider the generality of the
observed relationships: “Is that always true? How can we be sure?”

Sophian (2007, 2008) suggests that an exclusive focus on counting in the early
years may put too much emphasis on discrete quantity and not enough on
continuous quantity. This brings to mind a delightful video clip used to illustrate
Piaget’s notion of centration, the tendency by younger children to focus on just
one feature of the display in a conservation of quantity task (e.g., the height of
liquid in a container but not its width, or the length of a row of counters but not
their spacing). In the video clip, the child is given one cookie and the interviewer
keeps two cookies. The interviewer asks the child if that is fair. As expected, the
child disagrees on the grounds that he has only one cookie and the interviewer
has two. The interviewer then breaks the child’s cookie into two pieces and asks if
it is fair now. The child responds: “yes, because these are two pieces and those are
two pieces”. This example beautifully illustrates the concept of centration, with
the child focusing only on discrete quantity (the number of pieces), and ignoring
continuous quantity (the amount of cookie).

THE NUMERACY DEVELOPMENT PROJECT

Sophian’s (2004, 2007, 2008) challenge to the “counting first” perspective raises
some important questions about the Number Framework used in New Zealand'’s
Numeracy Development Project (NDP), (Figure 1). The hierarchical arrangement

of stages on the framework implies that students should move from “Counting
All” (stages 2-3) to “Counting On” (stage 4) before they begin thinking about the
relationships among parts and wholes (stage 5 Early Additive Part-Whole thinking).

Hence the emphasis on counting, while effective initially, may makes it difficult
for students to develop advanced additive, multiplicative, and proportional
reasoning. Certainly efforts to increase the percentages of students reaching
stages 5 through 8 in Years 5 to 9 have been somewhat disappointing (see Table

1 and Young-Loveridge, 2005, 2006, 2007, 2008, 2009, 2010). Data from students
whose teachers participated in NDP professional development programmes have
been compared with the expectations documented in the Mathematics Standards
(Ministry of Education, 2009). The analysis shows that the percentages of students
who reach the expected level for their year group is well short of the Standards. It
is possible that a greater emphasis on “comparison of quantities” and on subitizing
might benefit students substantially in the long term. As Sophian (2008) points
out, we don't know a lot about the possible merits of alternative approaches to
mathematics teaching.

Table 1 The percentages of students in Years 1-8 at or above a particular stage on
the Number Framework and the corresponding curriculum expectations from the
Mathematics Standards (boxes indicate expected stages)

units, learning about Year Yr1 Yr2 Yr3 Yr4 Yr5 Yr6é Yr7 Yr8
\l,;?;—lTegl::::geZ;zzs . ) stages early late early late early late
Curriculum Expectations 2-3 stage4 stage5 stage5 stage6 stage6 stage7 stage7
fractional quantities,
both of which involve [ , e Domain
understanding Number of students 24931 27947 29720 30576 31475 32526 27286 27998
about how units Stage 3+ 41 76 92 97 98 99 98 99
are used to mal.<e Stage 4+ 19 57 84 94 97 98 98 98
sense of nu.merlcal Stage 5+ 2 14 41 63 75 84 86 90
rePfeﬁentath”S' Stage 6+ 1 5 14 25 38 46 58
Sophian points out
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Until recently, the assessment of the youngest children in the NDP has focused
only on the additive domain (Form A of NumPA; see Ministry of Education, 2008,
n.d.). It might be useful also to consider asking some questions about simple
fractional quantities (perhaps also multiplication using doubling, and sharing
division). Currently, the absence of multiplication/division and proportion/

ratio questions implies that information about students’ understanding in the
multiplicative and proportional domains is not relevant to students who are not
yet able to use part-whole strategies to solve addition and subtraction problems
involving whole numbers. This might also mean that many teachers with Year 1-3
students mistakenly assume that they do not need to understand the multiplicative
and proportional domains. These concerns have been addressed in the recently
developed Junior Assessment of Mathematics ([JAM] Ministry of Education, 2011).

The large number of counting stages at the lower end of the framework (stages O
to 4) may lead some teachers to spend more time on counting than is absolutely
necessary. For those teachers lacking in confidence about teaching mathematics,
it might be all too easy to continue focusing on counting and delay progression
to part-whole concepts. Aggregating the initial counting stages on the framework
for the additive domain in pairs, combining stages 0—1 (emergent and one-to-one
counting) and stages 2—3 (counting from one on materials and counting from
one using imaging) could effectively reduce the number of different counting
stages on the framework and might help make stage 5 (early additive part-whole
thinking) seem more attainable for students in the early school years. Anecdotal
evidence suggests that some early years teachers may have been putting more
energy into building number knowledge (including number-word sequence forwards
and backwards, numeral identification, basic facts, and place value) than on
number strategies, in particular, part-whole strategies. However, the introduction
of the Mathematics Standards has made it clear that teachers need to raise their
expectations of their students (see Ministry of Education, 2009).

CONCLUSION

The numeracy initiatives that have developed as a consequence of mathematics
reforms have played an important part in improving the mathematics learning of
students and teachers. However, there are important questions to consider about
whether counting should continue to be emphasised so heavily in the early years,
or whether students would benefit from having a greater variety of mathematical
experiences, including subitizing and comparison of continuous quantities. Evidence
suggests that the challenges of sustaining the benefits of the numeracy initiatives
such as the NDP are many (see Young-Loveridge, 2010). The reform process is a long
and difficult one. It will take time and commitment to bring about the kind of deep
and lasting change that mathematics educators envisage for the future.
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