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A DEVELOPMENTAL PERSPECTIVE ON MATHEMATICS

JENNY YOUNG-LOVERIDGE
ScHooL oF EDUCATION
THE UNIVERSITY OF WAIKATO

Abstract: This paper looks at the
issue of mathematics learning from a
developmental perspective. It begins by
focusing on the importance for teachers
of understanding how mathematical
thinking develops.

The New Zealand Number
Framework is used as an example of a
developmental progression that is of
particular relevance to the teaching
of mathematics. The paper examines

data from the Numeracy Development
Project gathered by teachers using the
diagnostic interview — the Numeracy
Project Assessment (NumPA). The
data comes from almost a quarter
of a million students whose teachers
have participated in the Numeracy
Development Project over the past
three years.

Two major developmental progressions
are explored in the paper — the
transition from counting to part-whole
strategies, and the move from additive
to multiplicative part-whole thinking.

The final section of the paper looks
at some practical ways of fostering
multiplicative thinking using structured
materials.

TEACHING AND LEARNING:

THE CASE OF MULTIPLICATIVE THINKING

The importance for teachers of taking a developmental perspective towards their
teaching is increasingly being recognised. A recent publication from the Committee
on Teacher Education of the US National Academy of Education presents what

is currently considered to be key foundational knowledge for teaching in a

series of 12 state-of-the-art papers (see Darling-Hammond & Baratz-Snowden,
2005; Darling-Hammond & Bransford, 2005). The framework for understanding
teaching and learning has three major components: knowledge of learners and
their development in social contexts, knowledge of subject matter and curriculum
goals, and knowledge of teaching. Knowledge of learners comprises: understanding
learners and learning, understanding human development, and understanding

the development and use of language. In New Zealand, the Teachers’ Council has
drafted a document outlining the graduating standards for teacher education
qualifications leading to provisional registration as a teacher. As in the US, New
Zealand teachers are expected to have professional knowledge (including theory
and current research) of "human development, learning and pedagogy which
contributes to understanding the learning needs of a diverse range of learners” (ref
needed).

Such is the importance placed on understanding human development, that the US
material includes an entire chapter devoted to the topic, aptly titled ‘Educating
teachers for developmentally appropriate practice’ (Horowitz, Darling-Hammond
& Bransford, 2005). In this chapter, it is asserted that “novice teachers should
understand that knowing about development is central to being an effective
teacher... [and] understanding developmental pathways and progressions is
extremely important for teaching in ways that are optimal for each child” (p. 92).

DEVELOPMENTAL PERSPECTIVES ON STUDENTS' THINKING

Many people associate developmental perspectives on students’ thinking with the
work of Jean Piaget, the Swiss psychologist whose theory about the development
of children’s thinking is well known to those working in the fields of education and
social sciences. Although Piaget’s theory has been criticised by many writers, there
are key aspects of his work that are still very powerful in helping to explain how
students learn. Piaget's idea that children learn to make sense of the world as part
of a process of adaptation, makes a valuable contribution to our understanding

of learning processes. According to Piaget, adaptation happens as a result of the
twin processes of assimilation and accommodation. Initially, people make sense

of or interpret the world according to their existing conceptual frameworks
(assimilation). However, often some aspect of a new object or experience does
not quite fit with that existing knowledge and an extension or elaboration of the
model of understanding is required in order to take account of that new feature of
the experience (accommodation). Once we become aware of these processes, it

is easy to see how assimilation and accommodation happen over and over again
as we encounter new experiences or information in our everyday lives. These
processes explain the way that new information builds on prior knowledge, and
the importance for teachers of finding out about students’ existing knowledge
and understanding before attempting to teach something new. The processes of
assimilation and accommodation also explain the way learning is usually a fairly
gradual process, with students continually constructing and reconstructing their
understanding in response to engagement with their environments. Piaget’s theory
has been credited by many writers as a forerunner of Constructivism, a theoretical
approach to teaching and learning that is widely accepted within the education
profession (Barker, 2000/2001; Biddulph & Carr, 1999/2000).

Developmental pathways or progressions consist of ordered sequences of steps or
stages that describe increasingly sophisticated ways of responding to particular
learning tasks. They provide the basis for expectations about what the next
milestone in a sequence might be. They have the potential to enhance learning by
informing teachers about the likely next step in terms of learning goals, so that
energy is not wasted on trying to teach something that is much further along the
pathway than is realistically achievable for a particular student. On the other hand,
a potential disadvantage is that they may constrain learning by imposing limits
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on what a particular student is perceived as being able to learn. Having a good
understanding of developmental pathways and progressions should enable teachers
to tailor their teaching to meet the developmental learning needs of their students.

Some writers have used a staircase metaphor to characterise the way Piaget’s
theory explains student learning, contrasting it with the network metaphor of
constructivist approaches (Biddulph & Carr, 1999/2000). Others have contrasted
a ladder metaphor with a jungle-gym metaphor (Begg, 2004). Socio-cultural
approaches to learning, such as Vygotsky’s, have become popular in recent times
because of the way that they acknowledge the social and cultural aspects of
learning as a person participates in their communities. Although Piaget’s theory
tends to emphasise the individual acquisition of knowledge and understanding, it
sits comfortably alongside socio-cultural approaches to learning. As Sfard (1998;
2003) has pointed out, the so-called acquisitionist metaphor (reflected in Piaget’s
theory) complements the participationist metaphor (evident in the work of socio-
cultural theorists). The value of both approaches is reflected in the title of Sfard’s
(1998) paper: ‘Two metaphors for learning and the dangers of choosing just one’.

A DEVELOPMENTAL PATHWAY FOR NUMERACY LEARNING

Like other frameworks developed elsewhere, the NZ number framework is a
research-based framework that describes progressions in understanding number
(see Figure 1) (Bobis, Clarke, Clarke, Thomas, Wright, Young-Loveridge, & Gould,
2005; NSW Department of Education & Training, 2003). The number framework
was developed to give teachers a way of describing students’ attainment on the
basis of their number knowledge and problem-solving strategies. It needs to be
considered alongside the individual task-based interview (NumPA) designed to
help teachers assess children’s mathematical thinking and make judgements about
the stage on the number framework a student’s response best fits. Teachers are
introduced to the number framework and the diagnostic interview as part of a
comprehensive programme of professional development (for more information, see
Ministry of Education, 2005a; 2005b; 2005¢; n.d.).

Figure 1:
OVERVIEW OF THE NEW ZEALAND NUMBER FRAMEWORK

0 Emergent (cannot yet count)

1 One-to-one counting (can count a single collection only)

2 Count from one with materials (counts all for two collections of materials)
3 Count from one using imaging (counts all for two screened collections)

4 Advanced Counting (counts on from one of two collections)

5 Early Additive Part-Whole (uses simple partitioning & recombining)

6 Advanced Additive P-W (uses a range of additive part-whole strategies)

7 Adv'd Multiplicative P-W (uses a range of multiplicative p-w strategies)

8 Advanced Proportional P-W (uses a range of proportional p-w strategies)

The framework has two main components: Strategy and Knowledge. The Strategy
component focuses on how students solve number problems, and the extent to
which they use mental processes as part of their solution strategies. The Knowledge
component encompasses key items of knowledge about the number system,
including the identification and ordering of whole numbers and fractions, as well
as place value and basic facts. The two components are seen as interdependent,
with Strategy creating new knowledge through use, and Knowledge providing the
foundation upon which more sophisticated strategies are built. Strategies include
the domains of addition/subtraction, multiplication/division, and proportion/ratio.
The domain of addition/subtraction provides a core component on which all
students are assessed. Students’ responses to addition/subtraction tasks are then
used to determine whether students should be assessed using the easiest form
(A), the hardest form (C), or the one in between (B). The choice of form affects the
opportunities students are given to show what they understand and can do. For
example, only Forms B and C include tasks to assess multiplication/division and
proportion/ratio, and only Form C includes the most challenging tasks that allow
students to show the highest levels of reasoning in these two domains.

PROGRESSION FROM COUNTING TO PART-WHOLE THINKING

One of the challenges for teachers of students at lower framework stages (0 to 4)
is to help them move beyond counting to part-whole strategies (Young-Loveridge,
2001; 2002a). Data from the Numeracy Development Project shows that even
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at the year 7 and 8 level, a notable group
of students continue to rely on counting
strategies to solve problems, even after
they have been given extra help (31%

& 24% before the project, and 15% &
9% after the project, for years 7 and 8,
respectively; see Young-Loveridge, 2005).

The NZ Numeracy Project credits students
with Stage 5, Early Additive Part-Whole
Thinking, if they can use any part-whole
strategy to solve addition or subtraction
problems mentally by reasoning the
answer from basic facts and/or place value
knowledge. For example, when given 9 + 8,
they partition 8 into 1 and 7 so that the 1
can be put with the 9 to make 10, then the
remaining 7 is added on to 10 to make 17.
Alternatively, they might use knowledge

of doubles with an adjustment (9 + 9 -1
or8 + 8 + 1), or add 10 to 8 then take 1
off. Students can be credited with Stage 6,
Advanced Additive Part-Whole Thinking, if
they are able to use at least two different
mental strategies to solve addition or
subtraction problems with multi-digit
numbers. The three problems which allow
students to show part-whole thinking
include the bus problem: 53 people on

the bus, 26 get off, How many people left
on the bus; 394 stamps plus another 79
stamps, How many stamps then?; and
$403 in the bank account, $97 used to buy
a new skateboard, How much money left in
the account?

Closely connected to the transition to
part-whole thinking are the two different
ways of thinking about the number
system (Young-Loveridge, 2004). These
different conceptions of number have
been identified as underpinning children’s
solution strategies for problems involving
addition, subtraction, multiplication, or
division (Yackel, 2001). Counting-based
(or sequence-based) solutions are based
on the number line. They begin with

one of the numbers in the problem and
involve jumping along the number line,
either forwards (in the case of addition or
multiplication) or backwards (in the case
of subtraction or division). Even when
there is no evidence of counting per se,

it is assumed that abbreviated counting
(e.g. counting on or skip counting) is the
basis for the solution (Yackel, 2001).The
empty number line developed by the Dutch
is a good example of a counting-based
model (Beishuizen, 1999; Carr, 1998; Klein,
Beishuizen & Treffers, 1998).

Collections-based solutions involve the
partitioning of numbers into component
parts and the subsequent joining (in the
case of addition or multiplication) or
separating (in subtraction or division)

of the parts to get the answer (Yackel,
2001). Standard place-value partitioning
(breaking up numbers according to the



value of the units, such as hundreds, tens
& ones) is just one way of partitioning
numbers. A different partitioning strategy
could be based on doubling or halving. For
example, a small but notable group of Year
6 students used their knowledge that two
groups of 25 make 50 to solve a problem
involving 53 — 26; that is, they halved 50
to get 25, took one more off to get 24,
then put on 3 to arrive at an answer of 27
(Young-Loveridge, 2002a).

The number frameworks used in various
numeracy initiatives usually begin with
counting at lower levels and progress to
the use of derived number facts at higher
levels, implying that collections-based
ways of thinking about numbers are

more sophisticated than counting-based
approaches (e.g. Ministry of Education,
2005a; NSW Department of Education

& Training, 2003). These two different
conceptions complement each other.
According to Yackel (2001) it is “important
for children to have both a collections-
based and a counting-based conception of
number,” (p. 25) because of the flexibility
that it gives them in terms of possible
solution strategies.

PROGRESSION FROM ADDITIVE TO
MuLTIPLICATIVE THINKING

Much of the writing on the importance

of acquiring part-whole thinking focuses
almost exclusively on getting students

to use part-whole thinking for problems
involving addition and subtraction.
However, additive thinking is just the

first step towards part-whole thinking. It
also provides the foundation on which
multiplicative thinking can build (Young-
Loveridge & Wright, 2002). Multiplicative
thinking has increasingly been the focus of
research and writing in recent times (Clark
& Kamii, 1996; Fuson, 2003; Mulligan &
Mitchelmore, 1997). Several academics
have written about the importance of
distinguishing between additive and
multiplicative reasoning (eg, Clark & Kamii,
1996; Jacob & Willis, 2001). Sowder (2002)
provides a simple but powerful example
of the crucial difference between additive
and multiplicative thinking using an
investment scenario: one person invests $2
and gets back $8; while the other person
invests $6 and gets back $12. Typically
additive thinkers simply calculate the
difference between the investment and
the profit, and conclude that the deals

are the same because both people make

a $6 profit. Multiplicative thinkers, on

the other hand, can appreciate that the
first investment quadrupled, whereas the
second investment only doubled, so the
first investment is a better deal.

The New Zealand (NZ) Number

Framework recognises the way that multiplicative thinking builds on additive
thinking, and multiplicative thinking in turn provides the foundation on which
proportional reasoning can be built (see Figure 1 and Ministry of Education,
20054a; n.d.). Research evidence supports the idea that students have difficulty
reasoning proportionally unless they can use multiplicative part-whole strategies
(Young-Loveridge & Wright, 2002). Likewise, students find it difficult to reason
multiplicatively unless they have a good grasp of additive part-whole strategies
(Young-Loveridge & Wright, 2002). The NZ Numeracy Project credits students with
Stage 7, Advanced Multiplicative Thinking, if they can use at least two different
multiplicative part-whole strategies to solve problems such as finding the total
muffins in six baskets each with 24 muffins, and/or finding how many 4-wheeled
cars could be made from 72 wheels. Examples of multiplicative strategies for the
muffins problem include: 6 x 20 = 120, 6 x 4 = 24, 120 + 24 = 144 (standard
place-value partitioning); or 6 x 25 = 150, 150 — 6 = 144 (compensation); or 6

x 24 = 12 x 12 = 144 (doubling and halving). Possible multiplicative part-whole
strategies for the wheels problem include: 80 + 4 =20s072 + 4=20- (8 + 4) =
18 (compensation); or 10 x 4 = 40,72 - 40 =32,8x4=32,10 + 8= 18,50 18
x 4 = 72 (reversibility and place-value partitioning); or 9x 8 = 72 s0 18 x 4 = 72
(doubling and halving) (Ministry of Education, 2005a). -

Recently, | have become more aware of the importance of multiplicative thinking
and the need for children to progress beyond additive part-whole thinking. My
interest in this issue was sparked by curiosity about the way that the current
Numeracy Project materials present the New Zealand Number Framework using
number-line models to illustrate each of the framework stages (see Ministry of
Education, 2005a). In an earlier version of the materials (Ministry of Education,
2001), multiplicative thinking was illustrated using array-based models. The
advantage of using arrays is that the distributive property can be very nicely shown
(see Young-Loveridge, in press). Both number-line and array-based models are
iconic representations of the multiplicative process. In other words, they provide
visual images that can act as a bridge between concrete materials and abstract
representations (see Ministry of Education, 2005c).

A big advantage of array-based models is that they allow the two-dimensionality
of multiplication to be shown clearly. Number-line models, by contrast, are uni-
dimensional as they present multiplication as a series of (equal-sized) jumps along
a number line. The unfortunate implication of this way of presenting multiplication
is that multiplication is conveyed as a process of repeated addition. However,
research literature indicates that repeated addition is a relatively unsophisticated
strategy for solving multiplication problems that does not take account of the
complexity of multiplication processes (see Mulligan & Mitchelmore, 1997).
Working with arrays — partitioning and recombining the parts — enables students to
develop a solid understanding of the way multiplication works and an appreciation
of the distributive property of number. Having this deeper and more flexible
understanding of multiplication is part of what enables multiplicative thinkers to
use more powerful strategies than their additive peers.

EVIDENCE FROM THE NUMERACY PROJECT DATA ON DEVELOPMENTAL
PROGRESSIONS

Analysis of the data gathered over the past three years by teachers using

the diagnostic interview NumPA (Numeracy Project Diagnostic Assessment)
individually with each of their students shows the importance of moving from
counting on (Stage 4) to part-whole thinking (Stage 5 and above). Table 1 shows
the percentages of students at the end of the project who were at Stages 4 to 6 on
Addition/Subtraction and were also at Stage 5 or higher on other domains. Table

2 shows comparable data for Multiplication/Division. Data from almost a quarter
of a million students is included in these two tables. The patterns, which were
reasonably consistent across the three cohorts that participated in the project
between 2002 and 2004, have been averaged over the three years for the purposes
of this paper.
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TABLE 1:

Percentages of students at Stages 4-6 on Addition/Subtraction who were at Stage 5 or higher on other

domains averaged across 2002-2004
ADDITION/SUBTRACTION

Mult/Division

5 Early Additive

6 Early Multiplicative/Adv Additive
7 Advanced Multiplicative

Total Add Part-Whole
Total Mult Part-Whole

Proportion/Ratio

5 Early Additive

6 Advanced Additive

7 Early Proportional/Adv Mult've
8 Advanced Proportional

Total Add Part-Whole
Total Mult Part-Whole
Total Prop Part-Whole

Fractions

5 Orders units fractions

6 Coordinates numerators & denoms
7 Recognises equivalent fractions

8 Orders fractions w unlike num/den

Total

Decimals & Percentages

5 Identifies decimals to 3 places

6 Orders decimals to 3 places

7 Rounds to nearest whole, tenth, hth
8 Converts decimal to percentage

Total

Grouping & Place Value

5 Knows tens in 100

6 Knows tens & hund in whole nos

7 Knows tens, hun, thou in whole nos

8 Knows tenths, hths, thths in decimals

Total
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Stage 6
Advanced
Additive
n=59929

10.7
40.6
46.8

98.1
87.4

17.5
30.5
35.6
10.8

94.3
76.9
46.4

26.5
28.1
18.7
15.1

88.3

24.7
17.0
133
11.4

66.3

25.6
23.2
23.0
18.7

90.5

Stage 5
Early

Additive

n=104296

41.0
29.2
1.5

71.7
30.7

379
19.2
2.0
0.2

59.3
21.4
2.2

44.4
15.5
1.0
0.4

61.4

38
1.6
0.6
0.3

6.2

42.4
11.4
1.3
0.7

55.7

Stage 4
Advanced
Counting

n=73620

123
2.7
0.1

15.0
2.7

11.4
1.9
0.1
0.0

13.4
2.0
0.1

20.1
2.2
0.0
0.1

22.3

0.6
0.1
0.1
0.1

0.8

14.0
1.6
0.1
0.0

15.7



TABLE 2:
Percentages of students at Stages 4-7 on Multiplication/Division who were at Stage 5 or higher on other
domains averaged across 2002-2004

MULT’'N/DIVISION Stage 7 Stage 6 Stage 5 Stage 4
Advanced Early Repeated Skip

Mult've Mult've Addition Counting
n=29626 n=56856 n=58156 n=65499

Addition/Subtraction

5 Early Additive 53 53.3 73.2 40.5

6 Advanced Additive 94.5 43.2 11.2 13

Total Add Part-Whole 99.8 96.5 84.4 41.8

Proportion/Ratio

5 Early Additive 5.7 31.0 47.6 16.6
6 Advanced Additive 21.1 43.9 12.5 1.8
7 Early Prop’al/ Adv Mult've 51.0 13.2 1.6 0.1
8 Advanced Proportional 20.8 0.8 0.0 0.0
Total Add Part-Whole 98.5 89.0 61.7 18.5
Total Mult Part-Whole 92.8 57.9 14.1 1.9
Total Prop Part-Whole 71.7 14.0 1.6 0.1
Fractions

5 Orders units fractions 15.7 41.8 47.8 28.6
6 Coordinates num’s & denom'’s 25.4 32.0 12.0 2.7
7 Recog equivalent fractions 26.7 6.8 0.8 0.1
8 Orders fractions w unlike n/d 26.7 2.5 03 0.0
Total 94.5 83.0 60.8 31.5

Decimals & Percentages

5 Identifies decimal to 3 places 22.0 15.6 5.2 1.0
6 Orders decimals to 3 places 19.5 8.7 1.8 0.3
7 rounds nearest whole, tenth, hth 20.1 4.1 0.5 0.1
8 converts decimal to percent 20.6 1.5 0.2 0.0
Total 82.2 29.9 7.6 1.3
Grouping & Place Value

5 Knows tens in 100 13.9 42.9 44.6 219
6 tens & hund in whole nos 19.1 26.1 9.3 1.6
7 tens, hun, thou in whole nos 30.6 9.4 1.2 0.1
8 tth, hth, thth in decimals 32.3 3.7 0.3 0.1
Total 95.8 82.0 55.3 23.6

The first column in Table 1 shows the results for students who had been judged by their teachers to be at Stage 6 Advanced
Additive Part-Whole. To the right are students at Stage 5 Early Additive Part-Whole, and then those at Stage 4 Advanced Counting.
More than three-quarters (87.4%) of the Stage 6 students were able to use multiplicative thinking to work out that, if 3 x 20 =
60, then 3 x 18 = 60 — (3 x 2) = 54, or if 5 x 8 = 40 then 5 x 16 = 80. In contrast, fewer than a third (30.7%) of students at Stage
5 were able to do this, and virtually no students at Stage 4 (2.7%). Just under half (46.8%) of students at Stage 6 were able to
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use a multiplicative strategy to solve the muffins problem (6 x 24) and/or the
wheels problem (72 + 4). This was virtually the same as the number (46.4%) who
were able to use proportional reasoning to work out that, if 12 is 2/3 of a number,
that number is 18.Very few of the students at Stage 4 or 5 were able to solve

that problem (2.2% & 0.1%, respectively). Likewise, substantially more students

at Stage 6 were able to work flexibly with fractions and decimals than at lower
stages. Students who continued to use counting on/back to solve addition and
subtraction problems (Stage 4) were extremely limited in their work with fractions
and decimals. Fewer than a quarter (20.1%) of students at Stage 4 could order unit
fractions (Stage 5), and only a tiny proportion were able to convert an improper
fraction (e.g. 8/6) into a mixed fraction (Stage 6), recognise the equivalence of

2/3 and 6/9 (Stage 7), or order a series of fractions with unlike numerators and
denominators (Stage 8).

A similar pattern is shown in Table 2, except that the first column shows students
who were at Stage 7 on Multiplication/Division, and each column to the right

of this shows students at the stage below. It is evident from Table 2 that only
students at Stage 7 showed strong evidence of proportional reasoning (51.0% &
20.8% at Stages 7 & 8 on Proportion/Ratio, respectively). These Stage 7 Advanced
Multiplicative students did substantially better than those at lower stages on
fractions, decimals, and percentages, underlining the importance of multiplicative
thinking for these domains. Evidence from Table 1 and Table 2 supports the idea of
a developmental progression from additive thinking to multiplicative thinking, and
from multiplicative thinking to proportional reasoning.

PRACTICAL WAYS OF DEVELOPING MULTIPLICATIVE THINKING

A variety of structured materials are available to support and encourage children’s
transition to using part-whole strategies rather than counting strategies. Ten-
frames are particularly useful for helping students use groupings of five and ten to
learn about partitioning and recombining quantities to solve problems. A three-
dimensional’ version of the ten-frame, constructed from recycled egg cartons
trimmed down to just ten compartments, allows students to manipulate materials
without worrying about the possibility that the objects might slide off the surface
of the ten-frame (Young-Loveridge, 2001; 2002b). They have the added advantage
of appealing to young children’s acquisitive tendencies and are large enough to
hold a range of small treasures.

Recently, | became intrigued with a piece of computer software (Maddy the
Multiplier) that allows students to partition a grid showing a multi-digit
multiplication problem by starting with their existing knowledge of multiplication
(the known), and building onto this the remaining part/s of the array (the
unknown) (for further details, see The Learning Federation, n.d.). A computer
mouse is used to partition the array into parts, by sliding a horizontal dividing line
up and down and a vertical dividing line from left to right (by clicking & dragging),
to stretch or shrink the known array (shown in one colour). The remainder of the
array can then be further partitioned into two or three smaller arrays (each shown
by a different colour). Although there are textbooks that include software with
them that allow the reader to model the operations and manipulate fractional
numbers on a computer, Maddy requires the user to be simultaneously logged

into a website (for authentication purposes), and this may not be possible in some
classrooms. | developed a paper version of the software using a structured grid and
different-coloured highlighter pens to show the smaller arrays within the overall
larger array (see Appendix A and Young-Loveridge, in press). The grid is structured to
show sections of 10 by 10 (heavy black lines), and the 5 by 5 sub-sections within
these (fine double lines). A multi-digit multiplication problem up to 35 x 25 can be
shown using the grid. The base-ten structure of the grid makes it easy to see the six
blocks of 100, the five blocks of 50 (5 x 10) that together make another 250, and a
block of 5 x 5 that completes the array. Summing the partial products: 600 + 250
+ 25, gives a total of 875, the product of 35 by 25.

Students start by colouring the array for a multiplication fact they do know. They
then use different colours for the remaining array/s. Adding the partial products of
each smaller array yields the overall product. We can see how the system works
with a simple multiplication problem like 3 x 12 (see Figure 2 i). For example,
colouring/shading a 3 by 10 array in one colour/shade leaves an array of 3 by

2, which accounts for the remaining 6 (see Figure 2 ii). The array can also be

made from two identical blocks of 3 by 6 that are side by side (see Figure 2 iii).
Moving one of those blocks directly below the other reveals the equivalence of

a 6 by 6 array to the original 3 by 12 array (see Figure 2 iv). An alternative way
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of partitioning the 3 by 12 array is to
distinguish three identical blocks of 3

by 4 that are side by side (see Figure 2

v). Moving the second and third blocks
directly below the first block reveals the
equivalence of a 9 by 4 array to the original
3 by 12 array (see Figure 2 vi). Three

strips of 12, each a different colour/shade,
shows the repeated addition strategy of
12 + 12 + 12 (see Figure 2 vii). This final
model differs from the other six in being a
linear (one-dimensional) additive model,
composed of three single rows of each
colour. The other six examples are two-
dimensional multiplicative models, each
composed of different combinations of
smaller arrays within the larger array. One
of the advantages of this paper version of
Maddy Multiplier with different colouring/
shading is that a permanent record can be
made of the alternative partitionings, and
this can be shared with other students and
with the teacher.



Figure 2:
A range of ways to partition 3 x 12 = 36 using multiplicative (array-based) partitioning (i to vi) and

additive (linear) partitioning (vii), shown with different colouring/shading
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For some students, the paper grids may be a little too abstract to help them make
sense of multiplication initially. A more recent development builds on the use of
the egg carton ten-frames to help students experience more directly multiple
partitionings of quantities and involves repackaging. Using coloured ping pong
balls for eggs, students are asked to think about other possible sizes and shapes for
a new design of egg carton by exploring as many different ways they can come

up with of arranging a collection of eggs, using the three-dimensional ten-frames
as convenient grouping containers. For example, 36 eggs can be arranged in two
rows of 18, three rows of 12, four rows of 9, or six rows of 6 (see Figure 3). By
directly experiencing the manipulation and transformation of different arrays

for a relatively small quantity, students should come to appreciate the two-
dimensionality of multiplication. For example, the first arrangement (2 x 18) can be
cut in half and the right-hand half re-positioned below the left-hand half to create
the third arrangement (4 x 9) via halving and doubling processes. The same halving
and doubling process can be used with the second arrangement (3 x 12) to create
the fourth arrangement (6 x 6). Working with arrays in these ways also provides a
more gradual introduction to the idea of multiplication as groups of groups, and
can provide an introduction to the use of the paper grids to help solve multi-digit
multiplication problems.

Figure 3:

Different ways of arranging 36 objects in ten-frame containers, including: 2 rows of
18, 3 rows of 12, 4 rows of 9, and 6 rows of 6.
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Although Piaget’s theory proposed that concrete operations precede formal
operations, there is a major question about whether or not all adults reach a
stage where their thinking is universally formal and abstract. Unfortunately,
many students at the upper primary level seem to regard the use of equipment
as beneath them, considering it appropriate only for young children (Year 5/6
children told us “That's just for babies”). In my experience, concrete materials

can be very useful in the early stages of learning even quite challenging concepts,
and this is just as true for adult students as it is for children. These materials help
students to engage with complex ideas more directly and allow them to explore
and experiment with the ideas. A nice example is the use of stick patterns to model
simple algebraic patterns. For example, a row of fish can be constructed whereby
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the tail of one fish doubles as the nose of
the next fish (see Figure 4). The challenge
for students is to work out how many
sticks are required to make the row of three
fish, and then how many would be required
to make a longer row, of say ten fish, 100
fish, or any number of fish. Students soon
work out that six sticks are needed for each
fish that is connected to a fish in front and
another fish behind, but the final fish in the
row needs two extra sticks to make its tail.
By working out a formula for this (6 x the
number of fish + 2), they can generalise the
pattern to any number of fish.

Figure 4:

An example of concrete materials used to
illustrate an algebraic pattern (number of
sticks = 6 x number of fish + 2).
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Modelling with materials like this can
help provide a bridge to more abstract
concepts or processes. According to many
writers, students’ thinking moves from

a dependence on materials, through

a transitional stage where imaging is
used, to a stage where understanding of
number properties can be used to solve
problems in mathematics (Fuson, 2003;
Hughes, 2002; Ministry of Education,
2005c; Pirie & Kieran, 1994). Structured
materials such as the three-dimensional
ten-frames or paper grids can provide a
bridge to solving multiplication problems.
Eventually students may be able to leave
paper grids behind and simply do rough
free-hand sketches of arrays, conveniently
partitioning an array into the known and
unknown parts in order to work out the
partial products and thus solve the problem
(Figure 5).

Figure 5:
Free-hand sketches showing ways to
partition 3 x 12 = 36 using multiplicative
(array-based) partitioning
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CONCLUSION

Developmental approaches to teaching and
learning can make a valuable contribution
to our understanding of students’
mathematics learning. A particularly
useful aspect of developmental theory

is the idea that new learning builds on
existing knowledge and understanding,
leading to the idea that it is possible to
identify developmental progressions in
learning. There seems to be reasonable
agreement within the mathematics
education research community about the
kind of developmental sequence involved
in coming to understand the number
system. The transition from counting to
part-whole thinking, and from additive to
multiplicative part-whole strategies, are
two significant developmental progressions
for mathematics learners. These transitions
can be supported through the use of
materials as well as diagrammatic models
of the processes. In concept development,
having a range of images, words, symbolic
expressions, and concrete representations
is valuable to ensure that a particular
concept is fully developed. For this reason,
exclusive reliance on either a number-line
or an array-based model may limit the
opportunities for supporting students’
learning. This is a particularly important
issue for multiplication processes, which
can be represented very effectively using
array-based diagrams. Although a number-
line model can be useful for showing
some aspects of multiplication (e.g. the

equivalence of doubling and halving), it tends to reinforce a linear repeated-
addition approach to multiplication. The complexity and power of multiplication
can only really be conveyed by an array-based model because it captures the two-
dimensional nature of the process.
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FOOTNOTES

! Although the egg carton is “three-dimensional” in that it has height (in addition
to length and width) to prevent objects in the compartments from moving, the
model it provides is actually two-dimensional, just like a flat ten-frame.
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